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Abstract—In this paper, a model that describes the transient heating of a thin wire causing the tip to melt,
roll-up of the molten mass into a ball due to surface tension forces, and the subsequent solidification of
the molten material due to conduction up the wire and convection and radiation from the surface, has
been provided. The wire is assumed to be heated at its lower tip to a temperature beyond the melting
temperature of the wire material by heat flux from an electrical discharge. The shape of the melt is
analytically/numerically determined by solving equations based on minimum energy principles. The depar-
ture from sphericity of the melt that is formed is examined by perturbation schemes, based on expansions
for small ratio of gravity to surface tension forces and small ratio of surface tension gradient to surface
tension forces, both of which are true for the problems considered. Temperature fields in the melt have
been obtained by solving the energy equation using a body-fitted coordinate system. Temperature fields in
the wire above the melt were calculated as well. Comparisons of those temperatures with experimental
measurements described in Part IT of this study are excellent.

1. INTRODUCTION

We examine the heating of a thin wire by heat flux
supplied at one end. The heat supplied eventually
causes the tip to melt. As the wire melts, surface ten-
sion forces cause the melt to roll-up and form a ball
shaped object. When the heating is terminated, the
melt cools and solidifies due to heat loss by conduction
up the wire and convection and radiation from the
surface. The analyses and numerical simulations
described in this study examine ali of the constituent
aspects of such processes. We start with a long fine
wire. The initial heat-up is governed by a nonlinear
transient heat conduction equation. The nonlinearity
arises from the presence of the radiative heat loss to
the ambient. The melting problem involves a careful
consideration of the mobile phase change interface.
By a suitable coordinate transformation, we immo-
bilize the interface and describe the problem in fixed
coordinates. The shape of the liquid melit is derived by
an extremum principle which guarantees a minimum
total energy for a given volume of melt. The effects of
temperature variation on surface tension and the effect
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of gravity are taken into account in deriving the shape
of the melt. The variational procedure associated with
the extremum principle results in the derivation of an
Euler-Lagrange equation for the surface shape at each
instant of time. The energy equation for the molten
and solid regions are simultaneously solved by finite
differences using body-fitted coordinates. The com-
putational grid is allowed to change with time as the
phase change interface is maintained coincident with
a fixed mesh line. The interface conditions with phase
change and the energy equations for the liquid and
solid regions are developed in a general non-orthog-
onal coordinate system suitable for the numerical cal-
culation. The timewise temperature distribution in the
solid phase is obtained by a numerical calculation.
The timewise temperature distribution in the solid
phase is obtained by a Crank—Nicolson solution al-
gorithm for the energy equation. Finally, comparisons
for shape predictions and temperature fields are made
between the numerical results and both experimental
measurements and photographs developed using high
speed films. In the experiments, described in Part II,
fine aluminum and copper wires are subject to electric
arc heating in a partially evacuated chamber or with
a suitable cover gas (see Fig. 1). The corresponding
current, pressure and temperature values are recorded.
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NOMENCLATURE

(56)

specific heat [J kg™ K™

bottom of the ball

E6tvés number (gp R2/0,,)

fraction

acceleration due to gravity (m s~
heat transfer coefficient [W m > K1)
coefficient defined by equation (56)
thermal conductivity [W m~! K]
length of the wire (scaled by R,,)
outward drawn normal from the ball
surface (b), melt interface (w)
pressure

coordinate control functions

radial coordinate (scaled by R,,)
radius [m]

time [s]

temperature (77— T;,) [K]

volume (scaled by nR})
x-coordinate (scaled by R,).

Greek symbols

o
B.y

r
€

thermal diffusivity [m? s™!]

fractions of the spacings used in finite
differencing

Lagrange multiplier

emissivity ; (6 —0,,)/0p

coeflicients defined by equation

1) /0, defined by equation (28)
coordinate direction

polar angle

(To=To)/(Too— Tw)

latent heat [J kg™ ']
coordinate direction

density [kg m™)

surface tension [N m™']
Stefan—Boltzmann constant
(Wm=2 K™

surface tension at melting temperature
[Nm™]

T dimensionless time.

QAT N D DI

Q
3

Subscripts

ambient

ball

liquid—solid interface
liquidus

melting condition
initial; 8 = 0

solid ; outer surface
solidus

void

wire.

f£<w»ogmTo .

Superscript
* dimensionless quantity.

. wire electrode

. wand electrode

. ceramic capillary

B W N -

. electric discharge

Fig. 1. Schematic representation of this problem.

The melting and solidification sequences are obtained
from high speed cinematography. Computer con-
trolled data acquisition and measurement are used.
The temperature measurements in the wire using type
K thermocouples enable us to determine the heat flux
from the electrical discharge to the wire and the
convective heat loss from the side of the wire to the
ambient.

An important contribution of this study is thought
to lie in the demonstration of suitable analytical and
numerical procedures for tracking mobile interfaces
involving melting and solidification. Also, an impor-
tant practical application of this modeling arises in
semiconductor chip assembly and packaging. In this
fabrication process, the solidified ball is pressed onto
the proper bond pad on the microchip to make a ball
bond. (A second bond is then made onto a lead frame
to connect the chip circuit to the outside world.) To
properly design automatic wire bonding machines
with a high throughput, parameters must be estab-
lished to assure perfect balls every time. A detailed
understanding of the various heat transfer processes
and mechanisms involved will enable the development
of optimal design conditions and considerable savings
are possible (see Jog et al. [1]).
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Fig. 2. Schematic of the transient heating of the wire.

2. ANALYTICAL/NUMERICAL STUDIES

2.1. Initial heat-up and melting of the wire

First, we are concerned with the temperature
response of a cylinder, subject to heat input at one end
and heat loss from its side by radiation and natural
convection. Consider a homogeneous solid circular
cylinder, initially at a uniform, constant temperature
equal to that of the ambient (see Fig. 2). Attime r = 0,
a uniform and constant heat flux is applied to its
bottom face. The cylinder loses heat from its side
through natural convection and radiation. The radi-
ative loss process is nonlinear. Since the cylinder
radius is much smaller than its length, we think of it
as a wire (L/R, ~ 100), where L is the length of the
wire and R, is the radius. Conduction is due mainly
to the temperature gradient along its axial direction.
Energy conservation in the wire is expressed by

ir_eT 2R,
ot - aXZ ks

{hT+ed[(T+T)* =-T31} (1)
where length x and time 7 are dimensionless. Equation
(1) is subject to the initial condition

T=T,—-T, at =0 @

the boundary condition at its bottom face before
melting

oT qo R,
= = 107w 3
OX | o k, @)
or during the melting process
T|x = x (1) = 0 (4)

and the boundary condition at the other end of the
wire
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T

P =0 &)

x =L
together with the interface condition

ox_ k0T
0t a,pA Ox

qR,
o p A

(6)

x = x;(1)

Here x;(r) denotes the instantaneous location of the
solid-liquid interface, T, is the melting temperature
of the wire, T, is the ambient temperature, 4 is the
latent heat for melting and p, is the density of the
solid. In equations (1)-(6), T, x and 7 are defined as
T* = (T—T,), x* = (x/R,), T = (to/R2), where R,
is the radius of the wire, a, is the thermal diffusivity
of the solid and the asterisks have been suppressed.
Also, k. is the thermal conductivity of the solid, 4 is
the heat transfer coefficient for convective heat loss
from the wire surface (see Ramakrishna er al. [2]), ¢
is the emissivity of the wire material, ¢ is the Stefan—
Boltzmann constant, g, is the heat flux from the arc
to the wire during the heat-up process and g is the
heat flux from the melt to the wire during the melting
and solidification processes. Estimation of g, itself is
discussed in papers by Huang et al. [3], Jog et al. {4,
5] and Ramakrishna et al. [6, 7].

During melting, the interface location (x = x;(1))
moves in the positive x-direction with time (in a fixed
coordinate frame). The moving interface x = x;(1) is
immobilized by using the following transformation :

s x—x(7)

x—-m, n<x< (7)

where x, x;(7) and L refer to a fixed coordinate system.

In the transformed coordinates, equation (1) becomes
or 1 T . dx, 1-% T
ot (L—x)? o dt L—x 0%

2R,
ks

{(hT+e[(T+T,)* — T2} (8)

Equations (3)—(6) become

R
Z;‘: 02_%& ©
T;_o=0 (10)
%Ve:l =0 (ihH
and

Equations (8)—(12) are solved by the Crank—Nicolson
technique. This enables us to determine the tem-
perature—time history in the solid, the instantaneous
location of the interface, and thus the instantaneous
volume of the melt, V), i.e.
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Vi(r) = nRix,(2) (%) (13)
|

where subscripts s and 1 refer to the solid and liquid

phases, respectively.

3. SHAPE OF THE MELT

The equilibrium form of the surface of the molten
metal and hence the instantaneous shape of the melt,
may be determined by solving the variational problem
of minimizing the total energy (Weinstock [8]). The
energy of an incompressible molten metal sphere
depends only on the volume of the fluid, and not on
the shape of its surface. This energy consists of : (a)
the surface free energy = ja ds, where s is the surface
area and o is the surface tension coefficient and (b)
the external field energy = gp, [ xdV,, where p, is the
density of the liquid, g is the acceleration due to grav-
ity and 7V is the instantaneous volume of the molten
liquid. Thus the equilibrium condition may be written
as

o= Jo ds+gp deVl = minimum. (14)

The minimum is to be determined subject to the con-
straint condition that, at any given instant,

V= jd V| = constant. (15)

We now assume that the liquid—solid interface remains
flat, and the surface is given by (see Fig. 3)
(16)

Assuming axial symmetry, the infinitesimal surface
area ds is given by

r=r(x).

a 2
ds = 2mr(x) /1+<é> dx (17)
and the infinitesimal volume d V| is
dV, = nr(x)* dx. (18)

Let r* = r/R,, x* = x/R, and D* be the point of
intersection of r* = r*(x*) with r* = 0 on the negative
x axis, and we omit the asterisks for convenience in
the following discussion. Let the parameter which rep-
resents the variation of the surface tension be defined
as

(19)

where o is the surface tension at the local temperature
and g, is the surface tension at the melting tempera-
ture. With the above, equation (14) for energy may
be written as

L.J. HUANG et al.

P

nRe,,

D 2,0\ 2
- '[ 2r(x) |1+ (‘f) dx
0 ax
D ar 2 D
+J 2er(x) [1+ <~> dx—J‘ Eoxr? dx.
] a'x 0

The E6tvss number Eo, which represents the ratio of
gravity effect to the surface tension, is defined as

II =

(20)

le»%/
Eo=——-. 2
0=%0 @
The constraint condition (16) becomes
V, D
V=—= =‘[ 2 dx. (22)
R, 0

Minimizing the energy Il in equation (20) subject
to the constraint condition, equation (22), gives the
Euler—Lagrange equation for r(x):

dzr g 2 | F 1+ EC 27732
"o \dx) ] T \dx
Er oy de [dr(dry
te rdxz_ dx/) +dxr dx dx
dr 2732
+E0xr[l+<—)] =0.
dx

Equation (23) is subject to the constraint condition
equation (15) and the conditions

(23)

r(0) =1 24
r{D)=0 (25)
and
{dr )
l//ahn =0 (26)

where I is the undetermined Lagrange multiplier.

The instantaneous shape of the molten metal is
determined by noting that the molten liquid has very
high surface tension and this surface tension decreases
only slightly with increasing temperature. Typically
for metallic wires, for example aluminum, £o is in the
range 107°-10~"' for a drop of radius R from 107’ to
10~ m, respectively. For aluminum, the variation of
surface tension with temperature can be expressed as
(Hatch [9])

o =[868—0.152(T,—T,)] x 107 °Nm~" (27)

where T, is the local surface temperature and T, is the
melting temperature in K. For AT = T,— T, = 10°K,
¢ ~ 1072 for aluminum. At such small Eo and ¢, the
departure from sphericity associated with the roll up
of the melt and subsequent ball formation may be
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regarded as a small perturbation. We now discuss a
perturbation scheme to reflect this feature. Let T,
be the surface temperature on the x-axis and 6, =
(T,— Tw)/(T,o— Tr). Then 4 is defined by

e = o0,. (28)

Since surface tension ¢ is linear in T, for a given
(T,,—Ty), 0 is fixed in value, and the following
relation is applicable :
d 06,
fos

dx ~ Tox’

(29)

Substituting equations (28) and (29) into equation
(23), the Euler-Lagrange equation may be rewritten
as

d?r dr\? dr\* P
o (&) ‘““[‘*(&ﬂ
slo [, (Y _ 1, 98, [  (drY
rb e Tla) T e ax T lax
dr 271372
+E0xr|:l+<a>} =0. (30)

This equation and the appropriate boundary con-
ditions are expanded in terms of the small parameters
¢ and Fo, and are solved up to first order. We write
the perturbation expansion

r=roo+rigd+roEo+... 31

where rg, is the zeroth-order solution, and the finite
quantities r,, and r,, represent the change due to
surface tension & and gravity Eo, respectively. Sub-
stituting equation (31) and its derivatives into equa-
tion (30), the governing equation and boundary con-
ditions may be rewritten as follows.

3.1. Zeroth-order solution
The equation for the zeroth-order solution is

dry,  [dree): dreo\ T2
I‘O()—EXT—<E —1—Fr00 1+ d—x =0

(32)
and the corresponding boundary conditions are
ro0(0) = 1 (33)
roo(D) =0 (34)
and
/, d;;" =0 (35)

An analytical solution can be found based on the fact
that the independent variable does not appear in the
nonlinear ordinary differential equation (32). The
analytical solution of this problem yields

roo(®)+ (x££ /Rj—1)* = R}

(36)
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where R, is determined by side conditions. For
V< %, we have to choose the negative sign before the
radical in equation (36). The solution for R, is then
given by

IH*(3Ry—H) =V. 37

For V > §, we have to choose the positive sign before
the radical in equation (36). The solution for R, is
now given by

fRI-IH’(GRy~H) = V. (38)
In equations (37) and (38)
H=Ry—/R}—1. (39)

3.2. First-order solution with surface tension effect (9)
The governing equation for r,, is

d?ryq [ 4x+./R3—1) }ﬂ
dx? R:—(x+./R3I—-1)*] dx

R}
+[(R§—(xi«/R%—1)2)2er

_ Ri
(RI- (et /RE— 1)
x I:(xi. /RF—1)

The boundary conditions for equation (40) are

8
dé, +2BS}. (40)
dx

ro=20 (41)

'D
J {roo +erio)*dx = V. 42)
0

Equation (40) with boundary conditions (41) and (42)
may be solved iteratively by using the fourth-order
Runge-Kutta method.

3.3. First-order solution with gravity effect (Eo)
In a similar manner, the governing equation for r,

is
4(xt./Ri-1)

dzrm_ %
dx*  [Ri—(x+ /R3-1)*] dx

R:
+[(R3—(Xi\/R%—1)2)Z}m

Rix

= 43
(R} —(x+/RE—1)?)*2 @)
with the boundary conditions
ror =0 (44)
"D
J [roo+Eory, P dx=V. 45)
0

and, as in the previous section, equation (43) with
boundary conditions (44) and (45) may be solved
iteratively by using the fourth-order Runge-Kutta
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method. In this manner we determine the contour r,
for a given V (1) at any time .

4. TEMPERATURE IN THE MELT

In this section, we are concerned with the tem-
perature response of the growing molten ball. The
melt, whose instantaneous shape is determined in the
previous section by the minimum energy method, is
subject to heat input at its outer surface from the
electrical discharge and heat loss by conduction up
the wire. The heat flux ¢ used in equation (6) and the
0, in equation (28) are derived from the results of this
section.

With reference to Fig. 3, the energy equation for
the melt is

o1, o*T, 130T, &*T,
e (T rar ae) W
subject to
77=0 at =0 47
T, quR,
ony Kk “8)
and, at the solid-liquid interface,
T,=0 at x=0. (49)

The heat flux from the melt conducted into the wire,
which is used in an earlier section for heat input, is

k, 0T,

1= R, on,

(50)

where subscript | represents the liquid phase, o, = «/a,
and n, and n,, denote the outward drawn normals to
the surface r = r(x). In equation (48), ¢, is the heat
flux received by the surface of the melt and it varies
with time. For arc heating, the value of ¢, may be
assumed to be related to g,., (the heat flux at the
bottom point D) by

o = Gmax COSE . (51)
NOW ¢« 18 related to the applied heat flux value g at

=0 by
3q,

o SRR Ceost (- Oy} )

where

. R,
6, = arcsin—

R, (53)

signifies the direction of the vector locating the bound-
ary between the melt and the solid.

Equation (46), subject to equations (48)—(53), is
solved by the ADI method using a body-fitted coor-
dinate system. The numerical mapping technique
employed is based on a method of automatic numeri-
cal generation of a general curvilinear coordinate sys-
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tem and first developed and applied to fluid mech-
anical problems by Thompson et al. [10]. The body-
fitted coordinate system is created by numerically
solving the following system of two elliptic equations :

ay Xe: — 201,55, + ay X+ (Px:+0x,) =0 (54)
Ay P 20,58 +daoty, + I (Pre+0r,) = 0.
(55)
The coefficients are defined as
a,, = X,z, +r,2,
@)y = XX, +Fely
ay = xi+1?
J=xer,—rax, (56)

The functions P and Q are coordinate control func-
tions which may be chosen so as to cause the coor-
dinate lines to concentrate in certain parts of the
domain where rapid variations of a given property are
expected. The transformed equations in the rectangu-
lar, uniformly spaced computational domain (&, #)
are

2upa1, T, iy, 007,
okon  J* on?

(‘)T JZ 062 JZ

+[J+“‘SQ J+xJ]8g”
X F rex o ooy |67,
= P__ RN I PR
+[J + o, i xl}ﬁn (&)
subject to
T,=0 at =0 (58)
67—1 OTI quw
2277 T Y A = 22 59
l:a__ 2 a, & - k JJa.,  (59)
T,=0 at y=0 (60)
T,=0 at ¢=1 (61)
and the axisymmetric condition
oT,
— = 0. 62
. (62)

These equations are solved by the ADI method. After
the temperature distribution in the melt is obtained,
the heat flux ¢ from the melt conducted into the wire
and AT, are calculated.

5. SOLIDIFICATION OF THE MELT

In the case of spherically symmetric solidification
of a pure metal, when the temperature of the melt
drops below the fusion temperature, the solid phase
forms and grows radially inward. As this occurs, latent
heat is released at the liquid—solid interface. The phase
change interface moves with a velocity determined by
the energy balance there. During solidification, there
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Fig. 3. Schematic of the ball during formation with coor-
dinates.

is an increase in density and a void may form in the
melt. The instantaneous void center will coincide with
the centroid of the molten mass. A purely radial flow
analysis with spherically shaped melts has been dis-
cussed by Heurtault ez al. [11] and Huang et al. [12].
But, in view of the non-uniform heat loss from the melt
surface, a one-dimensional formulation is inadequate.
We now provide a more detailed analysis.

The governing equation for the liquid phase and
the solid phase are governed by

10T,

oT, T, o*T,
E‘_E—_als<6r2 +;3;+ 6)62) (63)
and
oT, T, 18T, &7,
P i e (64)

respectively. Equations (63) and (64) are subject to the
following boundary conditions. At the liquid—ambient
and solid—ambient interfaces

anb ball surface

Rw
= — T {hT+es((T,+ T ~ T},
]
j=lors (65)

where n, 1s the outward normal to the ball (see Fig.
3). At the wire—melt junction

Ts I ball = Tl wire* (66)

The heat flux from the melt conducted into the wire,
which is used in solving the wire temperature for heat
input, is

k, 0T,
R, on,’

At the solid-liquid interface

q=- (67)
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T =T =0 (68)
and
oT.  oT,
ksa; —k o PsAlpy (69)

where 9/0n,, denotes the normal derivative at the inter-
face and n,, denotes the normal to the interface. Here,
A and v, are latent heat and normal component of
the velocity of the interface motion, and subscripts s
and | denote the solid and liquid phases, respectively.

The body-fitted coordinate system is used here. For
convenience, the analysis can be divided into three
regions of study, namely the liquid, the liquid-solid
interface and the solid.

5.1. Solid and liquid regions

The transformed governing equations in the rec-
tangular, uniformly spaced computational domain (¢,
n) are

2 2
_‘xlsall & T 2u,a,, 0 TJ Oislzy O T,

okon  J* oyt

X _ﬁf oty 10T,
+|:J +a|SQ 7 :|6§

reX et |05
+[J+'5P 7 J&n j=lors (70)
subject to
oT et gu R,

[‘12251_'—‘112 Eé—l]wl = bk, J/an ()
Ti=Tlwe at n=0 j=lors (72)
T,=Tl. at =1 j=lors (73)

and the axisymmetric condition
oT; 0 j=1 (74)
- = =lors.
& |, )

The governing equation with boundary conditions are
solved by the ADI method. Marangoni convection in
the liquid has been neglected since it is unimportant
for the problem under consideration.

5.2. Region near the solid—liquid interface

The interface condition appropriate for a general
nonorthogonal curvilinear coordinate system has
been developed in Huang ez al. [13]. If the interface is
defined as F(¢, n, 1) = £—T'(n, 1) = 0, equations (68)
and (69) in the (£, ) coordinate system become

ary? or
a,,+a 51— +2a12%

o4 _, on
Qaf laé

If F(&, n, 1) = n—A(&, 1) = 0, equations (70) and (71)
in the (&, ) coordinate system can be rewritten as

oT
J = ap.il? %; 75)
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OAN? oA
[all <‘5?> +a,; +2a, 52]

a7, oT, , . 0A
[ks P -k a”}—cxspszt.l pol

The method that continuously tracks the moving
interface has been used and this generally yields accu-
rate results. This method leads to a set of nonlinear
algebraic equations involving the unknown nodal
temperatures and the interface location. The equa-
tions applicable at the interface are isolated by making
an energy balance at the interface and the surrounding
nodal locations. The method accurately tracks the
interface along both of the coordinate axes thereby
eliminating the need for interpolating its location
between coordinate axes. The energy equation is used
implicitly in alternating directions similar to the con-
ventional ADI method. This avoids the need for iter-
ations at ordinary nodes away from the interface.

At any time t let the interface be near the nodal
location (p,q) and let its distance measured along
¢ and 5 coordinates be f,,A¢ and y, Az such that
—-05<f,,<05 and —0.5<7y,4<05 For
simplicity, the subscripts on f and y are dropped in
the text that follows. The first and second order deriva-
tives of the temperature near the solid-liquid interface
can be obtained by using a Taylor series expansion.
Here, we assume that node (p—1,q) or (p,q—1) isin
the liquid phase, and (p+1,q) or (p,q+1) is in the
solid phase.

(76)

Liquid phase near the interface for ¢-direction

aT, 1 [14+8 248

ag interface B A& [2+ﬁ Tp~2,q - 1+ﬁ Tpll'q (77)
T, 2 71 N
862 interface h E [2+ﬁ Tpiz'q - 1 +ﬁ Tp——l.‘i}’

(78)

Solid phase near the interface for £-direction

aT, 1[2-58 1-8
5 f ZKE[I_:__ﬁTp+I,q——2i'ﬂ_Tp+2.qt| (79)
interface
0T, 2 1 1
5-52—'t - =_A_§; z_ﬁTp+2.q_’1_ﬁTp+1.q :
(80)

Similarly, liquid phase near the interface for #-direc-
tion

oT,
on

A

interface A'] 2+y Pz
o*T,
on’

24y

— mTM_,] 81)

21, L
imerface_An2 24y PO Lgy rat |

(82)

Solid phase near the interface for #-direction
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o R Ly 83
6'7 interface B A”l I -7 Pt 2 -7 pare ( )
2?7,

2 1 1
interface B XrF [Ej}: Toas2— 1—y Toqin ] (84)

For tracking the interface movement along the two
coordinate axes, the interface conditions (75) and
(76), and the energy equations (70), written in alter-
nate directions, are solved by the Crank—Nicolson
method. In the ¢-direction, three unknowns, 8, T,,_,
and T,, ,, are solved by the following three equa-
tions: interface energy equation (75), liquid-phase
energy equation and solid-phase energy equation (70).
Using equations (77)—(80), these three equations
[(70), (75) and (76)] are transformed into finite differ-
ence formulae for numerical calculation. Similarly, in
the n-direction, equations (70) for liquid and solid
phases and (76) are used for solving for three
unknowns, ¥, T,,,.; and T, .., and equations (81)-
(84) are used to transform them into finite difference
formulae.

on?

6. SOLIDIFICATION IN A BINARY ALLOY
SYSTEM

Our solidification analysis may be extended to cover
binary alloy systems. Unlike pure metals which sol-
idify at a discrete temperature, alloys solidify over a
range bounded by the liquidus and solidus tempera-
tures. The cooling of the liquid metal alloy is described
by equations similar to the above set. We have to
replace the thermophysical properties of the pure
metal with those of the alloy. During the initial phase
of alloy solidification, only the liquid and mushy
regions exist. Here the mushy region is understood to
represent a homogeneous mixture of the liquid and
the solid in coexistence in relative proportions deter-
mined by a linear interpolation between the liquidus
and solidus temperatures. The mushy region replaces
the sharply defined liquid-solid interface existing in
the case of a pure metal. The thermophysical proper-
ties in the mushy regions are defined as

hys
¢ = (1=f)eps +/icos + A—T— (85)
k= (1—f)k,+fik (86)

and
p=(1~Hp+fip (87)

where b= h —hg, AT, s =T, —Ts and T, and T
are the liquidus and solidus temperatures, respectively
and f is the fraction of the liquid in the mush. We
may determine f; by using the lever rule (linear in-
terpolation) between T and Ts. It is assumed that the
latent heat release is independent of temperature in
the range Ty to 7. The remaining thermophysical
properties are obtained by interpolating between their
values for the solid and liquid phases, depending upon
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the local liquid fraction, f;. With the thermophysical
properties established, we may use the transient heat
conduction equation to describe the temperature evol-
ution in the mushy region.

7. SUMMARY AND CONCLUSIONS

Given the heat flux from the electric discharge to
the bottom of the wire and the convective heat loss
from the exposed side of the wire to the ambient, we
have shown how to calculate the entire temperature
and phase history of the metal. The calculation
encompasses initial heating, melting, ball roll-up, cool-
ing and solidification. The two inputs are obtained
from matching the computed results with exper-
imentally measured temperature time histories. The
details are given in Part II. With the input data so
obtained, we can compare computed and observed
ball shape profiles as a function of time. This com-
parison is displayed in Part I where we have presented
our conclusions of this entire study.
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